1
Orbital perspective on high-harmonic generation from solids | Nature Communications
www.nature.comHigh-harmonic generation in solids allows probing and controlling electron dynamics in crystals on few femtosecond timescales, paving the way to lightwave electronics. In the spatial domain, recent advances in the real-space interpretation of high-harmonic emission in solids allows imaging the field-free, static, potential of the valence electrons with picometer resolution. The combination of such extreme spatial and temporal resolutions to measure and control strong-field dynamics in solids at the atomic scale is poised to unlock a new frontier of lightwave electronics. Here, we report a strong intensity-dependent anisotropy in the high-harmonic generation from ReS2 that we attribute to angle-dependent interference of currents from the different atoms in the unit cell. Furthermore, we demonstrate how the laser parameters control the relative contribution of these atoms to the high-harmonic emission. Our findings provide an unprecedented atomic perspective on strong-field dynamics in crystals, revealing key factors to consider in the route towards developing efficient harmonic emitters. Here the authors identify real-space contributions to the characteristics of high-harmonic generation in ReS2 and demonstrate the possibility of laser-controlled emission. They find that the spectrum is not just determined by the band structure, but also by the interference between HHG signals coming from different atoms within the unit cell.
You must log in or register to comment.