I understand that you feel learning new things is hard. I sympathize with you. Lets start with a real easy one. High school algebra students often learn what mathematical functions are. You can handle that right? Tell me the mathematical definition of a function. Oh! Oops, I have accidentally linked you to a place where you can find the definition I’m asking you for in the first paragraph. Well, no going back now. Feel free to copy and paste the first paragraph of that link here.
Hmm, I wonder if there is a link between functions and finite/infinite sets? Oh gosh golly, perhaps they are related in some way? Almost like the definition of one requires some notion of the other?
I’ve never argued that mathematics has a concept of finite or infinite numbers, or not. All that I have argued is that what the math world identifies as infinite, is not actually infinite when applied to the real world. As an engineer I deal with recursive functions, code that can run indefinitely. But as an engineer I understand that the code that is running needs an initiation point, the point at which the code is initially executed, and I understand that the seemingly infinite nature of the code, is bound to the lifespan of the process that execute it, for example, until the process is abruptly stopped, or power is taken away from the computer the process is running on. A lifespan invalidates the seemingly infinite nature of the code, from a practical sense. When you start to understand this, and then expand your focus to larger objects like the universe itself, you start to understand the finite nature of the material world we live in.
I understand that mathematicians deal with abstraction. I deal with them too as an engineer. The difference is that as an engineer I have to implement those abstractions within the real world. When you do this enough times you will start to understand the stark differences between the limited hypothetical worlds math is reasoned about, and the very dynamic world the real world, that those math solutions are applied to. The rules of hypothetical worlds are severely limited in comparison to the real world. This is why it’s very important for me to define the real world boundaries that these math problems wil be applied to.
I’m used to working with folks, like yourself, that have a clearly hard time transitioning from a hypothetical world to the real world. This is why I have respond with civility, and have looked past your responses insulting tone. I understand it’s a fear response of the ego, and I don’t judge you for it. I understand that it’s difficult to fight with the protection mechanisms of the ego.
I understand that you feel learning new things is hard. I sympathize with you. Lets start with a real easy one. High school algebra students often learn what mathematical functions are. You can handle that right? Tell me the mathematical definition of a function. Oh! Oops, I have accidentally linked you to a place where you can find the definition I’m asking you for in the first paragraph. Well, no going back now. Feel free to copy and paste the first paragraph of that link here.
Hmm, I wonder if there is a link between functions and finite/infinite sets? Oh gosh golly, perhaps they are related in some way? Almost like the definition of one requires some notion of the other?
I’ve never argued that mathematics has a concept of finite or infinite numbers, or not. All that I have argued is that what the math world identifies as infinite, is not actually infinite when applied to the real world. As an engineer I deal with recursive functions, code that can run indefinitely. But as an engineer I understand that the code that is running needs an initiation point, the point at which the code is initially executed, and I understand that the seemingly infinite nature of the code, is bound to the lifespan of the process that execute it, for example, until the process is abruptly stopped, or power is taken away from the computer the process is running on. A lifespan invalidates the seemingly infinite nature of the code, from a practical sense. When you start to understand this, and then expand your focus to larger objects like the universe itself, you start to understand the finite nature of the material world we live in.
I understand that mathematicians deal with abstraction. I deal with them too as an engineer. The difference is that as an engineer I have to implement those abstractions within the real world. When you do this enough times you will start to understand the stark differences between the limited hypothetical worlds math is reasoned about, and the very dynamic world the real world, that those math solutions are applied to. The rules of hypothetical worlds are severely limited in comparison to the real world. This is why it’s very important for me to define the real world boundaries that these math problems wil be applied to.
I’m used to working with folks, like yourself, that have a clearly hard time transitioning from a hypothetical world to the real world. This is why I have respond with civility, and have looked past your responses insulting tone. I understand it’s a fear response of the ego, and I don’t judge you for it. I understand that it’s difficult to fight with the protection mechanisms of the ego.