It’s a very capitalist way of thinking about the problem, but what “negative prices” actually means in this case is that the grid is over-energised. That’s a genuine engineering issue which would take considerable effort to deal with without exploding transformers or setting fire to power stations
Home owned windmills are almost a total waste. Its surprising how little electricity they generate especially given how much the cost to buy and install. Some real numbers. A 400w can cost almost $18k to buy and install. A 410w solar solar panel is about $250 + $3k of supporting electronics and parts. And that same $3k can support 10+ more panels. I looked into it myself really wanted it to be worth it for home, but it just isn’t. Now utility grade wind? Absolutely worth it. You need absolutely giant windmills with massive towers, but once you have those, you can make a LOT of electricity very cost effectively.
Solar panels worth it? Yes. Absolutely.
Batteries, not quite there yet for most folks. Batteries are really expensive, and don’t hold very much electricity $10k-$15k can get you a few hours of light or moderate home use capacity. For folks with really expensive electricity rates or very unreliable power this can be worth it financially, but for most every else. Cheaper chemistry batteries are finally starting to be produced (Sodium Ion), but we’re right at the beginning of these and there not really any consumer products for home made from these yet.
Yeah, right now end of life EV batteries are great for making your own power storage but that’s a level of diy beyond what 95% of people are willing or able to do
What’s infuriating is that we had electric cars before ICE powered cars. 1899. If we would’ve been investing money and effort into research for battery technology since then, we wouldn’t have this problem. Salt batteries, solid state batteries, and other promising tech is in it’s infancy because we just started to take this seriously as a society like 10 years ago.
Better late than never but it grinds my gears that the best argument against solar and wind is power storage requirements due to unpredictable power generation. Like this is an extremely solvable problem.
Yeah, right now end of life EV batteries are great for making your own power storage but that’s a level of diy beyond what 95% of people are willing or able to do
End of life EV batteries are great for grid-scale operators doing power storage, but I highly recommend against homeowners use them this way. Not just because they are complex DIY projects as you point out, but because the EV batteries that are aging out of car use are NMC chemistry. These are great for high density power storage, which you want in a car, but they are susceptible to thermal runaway if they get too hot. The original Tesla Powerwall and Powerwall 2 also used these same chemistry batteries. I wouldn’t want these in my house. However, in a utility grid scale? Sure, they won’t be anywhere near people so in the unlikely event they do catch fire its a property problem, not a lost human life problem.
I understand your concern, I totally agree that the volatility isn’t ideal, but putting it in a steel box outside your house isn’t that beyond the scope for a diy-er. Envision it the same way a generac sits outside and ties in to your house but with a safe enough enclosure.
As long as you check the cells you use when you deconstruct the car battery it should be fine. All the projects I watch online they don’t even need the liquid cooling system that it utilized when it was in the car because the discharge rate is so far below the C rating the battery that they don’t generate great like when they are in cars
I understand that cell could go bad though at any time, so the box is necessary imo
Ahh I get it now. You have no idea what you’re talking about. You have the smallest understanding of something and assume that is everything. You’re so very far away from understanding the practical applications and limits. You’re also clearly not interested in learning, so I’ll leave you to your impractical delusions.
Did you not look at the specs on that product? It only produces energy when winds are above 7mph and don’t actually hit the rated output unless the winds are almost 35mph.
Almost none of the country averages an amount of wind power per square meter equivalent to the rating on home turbines at 10 meters above ground level (yellow and red on this map):
Wait so the same people that can’t drop 500 USD for an emergency are expected to drop 300 USD for a wind turbine and provide the installation of it to boot is that right
“put the excess energy into batteries” is an idea, and is already pretty much what is done, but the large scale implementation still requires a lot of time, effort, and expense.
How, exactly, does that solve anything? It’s not like we can add some kind of magic automatic residential cutoff system (that would just make it worse) and residential distribution is already the problem! Residential solar is awesome (tho home batteries are largely elon propaganda…) but they only contribute to the above issue, not solve it. There are ways of addressing it, but they’re complicated and unglamorous.
It’s not like we can add some kind of magic automatic residential cutoff system
Of course we can. They’re called Microgrid Interconnection Devices (MIDs).
that would just make it worse
Microgrids that can disconnect from the utility at appropriate times may in fact make it better. If homeowners responded to utility alerts of high demand and opted to disconnect from the grid during those times while still having power, that would just make grid operators and home owners happier.
residential distribution is already the problem!
Microgrids are the solution!
tho home batteries are largely elon propaganda…
While residential BESSs are largely Tesla based, they are absolutely key in the energy transition from fossil- to renewables-based power sources.
they only contribute to the above issue, not solve it.
How?
There are ways of addressing it, but they’re complicated and unglamorous.
Because home batteries, while provisionally useful in the same way as a standby generator (though the generator is going to be far more eco friendly than the batteries over their respective lifetimes), is a vastly inferior solution to the implementation of even local grid scale solutions. Also because there is essentially 0 infrastructure designed to handle said batteries, they wear out quite quickly at home scales (unless you’re using uncommon chemistries, but if you’re using iron-nickle batteries you’re not the target audience here) and because Elon popularized them with his “powerwall” bullshit entirely to pump the stock value of Tesla’s battery plant (which is it’s own spectacular saga I encourage you to look up, it’s a real trip).
Batteries in the walls are useful in niches, but the current technology which uses lipo/lion/lifepo4 chemistries is inherently flawed and a route to both dead linemen and massive amounts of E-waste. They could be useful potentially, but as it stands, it’s really bad right now.
there is essentially 0 infrastructure designed to handle said batteries
If we’re talking residential scale, people already have the infrastructure: it’s the existing wiring inside their household. If we’re talking Commercial & Industrial (C&I) scale, it’s often the same answer. If we’re talking utility scale, oftentimes battery developers get quoted grid improvement costs from the utility and the developer has to pay those costs in order to connect to the grid. You act like the grid can’t change, and there isn’t any money lying around to make improvements, when in reality there are a lot of investors in BESS because of the high ROI.
they wear out quite quickly at home scales
This is true at any scale, resi, C&I, or utility, but batteries are modular and you can augment your capacity over time to make up for degradation.
Elon popularized them with his “powerwall” bullshit entirely to pump the stock value of Tesla’s battery plant
There are more manufacturers than just Tesla in the battery space, many of which who would benefit if the Powerwall failed or lost market share. Even if Tesla popularized them, their decline due to their idiotic, fascist CEO will mean that the existing demand will just look elsewhere for the same product, not exit the market entirely.
Batteries in the walls are useful in niches
In my opinion, every household could benefit from home battery storage just as much as people benefit from gas generators. They have widespread, not niche, appeal. The issue with low penetration in my opinion is lack of knowledge in both policymakers and customers.
the current technology which uses lipo/lion/lifepo4 chemistries is inherently flawed
While batteries do start to degrade the moment they leave the factory, the fact they have flaws doesn’t mean they aren’t still useful. You’re using the argument that the perfect is the only solution to the imperfect, when that shortsightedness gets in the way of progress.
route to both dead linemen
BESS failures have been falling and bottoming out over the last few years while deployment has skyrocketed. Seems like you’re telling a fiction.
massive amounts of E-waste
Recycling is projected to increase, especially as more and more battery installations reach End of Life (EOL), where as much as 60-80% of cobalt and lithium could be sourced from urban as opposed to virgin mines in the next 5-15 years. There is a sizable market opportunity for recycling to take off so long as good policy paves the way.
as it stands, it’s really bad right now.
Sure, let’s throw away one of humanity’s better solutions to the climate crisis since it’s bad now. It’s not like it could get better in the future. Again, such a show of shortsightedness.
provisionally useful in the same way as a standby generator (though the generator is going to be far more eco friendly than the batteries over their respective lifetimes)
A generator can provide backup power for unlimited time if fuel is available, but it is highest cost power in the world. Batteries can be charged/discharged every day, displacing dirty energy. A generator is either rarely used or eco destructive.
If you assume what’s being compared is the platonic ideal of both technologies then you’re largely correct, but removing them from the context of the real world (where: high density battery chemistries still wear out quickly, biodiesel is common, the supply chain is a major contributor of greenhouse emissions, the need for power backups is infrequent, and where grid power is still in large part supplied by fossil fuels) isn’t very useful. Local-grid scale battery storage is the best solution we have for direct energy storage, and it’s very much maturing rapidly, but home units are still restricted in the above and countless (because I am too lazy to count them) additional ways. Ignoring those issues doesn’t work; implementation doesn’t particularly care about theory.
LFP batteries are the right home solution (Sodium Ion soon enough). US is tariff/capacity/policy restricted. Utility monopoly restricted if you want to export to grid, or use your EV as V2G. Utilities are also protected from off grid choices, and are changing their pricing with extortive fixed portions of utility bills. Biodiesel is not a sustainable (worse than ethanol if produced intentionally) solution.
You need to look up how much grid storage lithium batteries are being built. It’s exponential growth. Faster than solar.
The reason it’s worthwhile is because solar makes energy with 0 or near 0 price to the owner in certain places, if they store that and use it for later they save money. There are cost calculators out there and for certain markets they make sense.
Of course Tesla pushes it they got a product people want and it makes the consumer and Tesla money. Win win. That’s business, nothing shady about that.
Yes batteries are better on the grid but that’s for exactly the same reasons why solar is better on the grid.
though the generator is going to be far more eco friendly than the batteries over their respective lifetimes
That’s just not true.
vastly inferior solution to the implementation of even local grid scale solutions.
Same as solar. But you seem to be pro rooftop solar but not home grids and no explanation why.
Also because there is essentially 0 infrastructure designed to handle said batteries,
Makes no sense because the struggles the grid currently has with solar will be offset. Home batteries reduces demand on the grid and internalise production and demand more into the house.
they wear out quite quickly at home scales (unless you’re using uncommon chemistries, but if you’re using iron-nickle batteries you’re not the target audience here)
In a cost exercise if the batteries last longer than the payback period they are worth it. Which is the case so that point is meaningless.
and because Elon popularized them with his “powerwall” bullshit entirely to pump the stock value of Tesla’s battery plant (which is it’s own spectacular saga I encourage you to look up, it’s a real trip).
I don’t under a CEO pushes a good product that helps the grid and helps consumers make money. Your bias against Elon is just limiting your world view.
Batteries in the walls are useful in niches, but the current technology which uses lipo/lion/lifepo4 chemistries is inherently flawed and a route to both dead linemen and massive amounts of E-waste.
Chemistry has nothing to do with electrons on the wires so that doesn’t make sense. Lithium ion batteries are recyclable. Yes batteries are Bette Ron the grid but getting them connected is hard. Same solar, waste on roofs but thats how it goes. The arguments are the same.
They could be useful potentially, but as it stands, it’s really bad right now.
Neat, a point by point breakdown. Love those. In no way are they fingernails to the blackboard of internet discussion.
Lets just get this over with:
That’s just not true.
Okay it’s pretty clear you’re very unfamiliar with this subject.
and no explanation why
The entire rest of my comment explains why. That’s what the whole comment is about. “Why” is the entire thesis of the comment. It is the comments entire raison d’être. In summary: the inefficiencies inherent to distributed implementation, the lack of service infrastructure, the short lifespans of the high-density battery chemistries needed in residential installs, etc.
In a cost exercise if the batteries last longer than the payback period they are worth it. Which is the case so that point is meaningless.
I don’t really care, though. It’s got nothing to do with the points I was making, which is why I didn’t address it. It’s largely irrelevant.
Makes no sense because the struggles the grid currently has with solar will be offset. Home batteries reduces demand on the grid and internalise [sic] production and demand more into the house.
Okay, no. This is not how residential demand or load balancing or power infrastructure works. There’s components you’re assuming exist that would have to run on magic to be safe (some kind of automatic interlock cut-in), and even those would absolutely devastate the grid by constantly adding and removing whole residential loads at random.
Your bias against Elon is just limiting your world view.
Oh buddy… buddy no. Come on.
Chemistry has nothing to do with electrons on the wires so that doesn’t make sense.
My gaster is well and truly flabbered. I honestly don’t know what to say in response to this.
Phew, that sure was a lot wasn’t it? Please please please take the time you’d use to write a response to this comment and go watch some electroboom videos instead, he’s very entertaining and a great educator of the concepts at play here.
After installation, a home owner has free electricity? I’m not trying to solve the issues for the power grid people, they have teams of people for that.
Spain and Portugal had almost complete blackouts today. You know who wouldn’t have had blackouts? The people with their own solar panels and windmills.
I acknowledge that there’s no real way to communicate sincerity online, but I’m gonna go ahead and promise I’m not trying to be a dick here when saying this:
a home owner has free electricity
I think you’re bonking up on the Dunning Kruger limit here, because that’s absolutely not how it works. Not only are the vast majority of homes not candidates for useful solar installs (you can pay someone to do it, but holy cow nearly every residential solar installer is a scam looking at you, Lumio International (how’s that RICO case going?)), but solar for home-use power generation is very much not the norm for a whole host of reasons (dead linemen one of the biggest ones) and the safety considerations for implementing it generally make it an onerous enough task to manage that it’s appeal is restricted largely to special interest users (homesteaders, preppers, S&R, power system enthusiasts, van life, etc ). There are ways this could be mitigated, but it would require a massive grid overhaul and additional constant upkeep beyond what any current grid already requires.
Not only are the vast majority of homes not candidates for useful solar installs
Australia is an edge case for everything solar and I’ll quite happily admit that! Yay Australia, well done. That said I’d be very willing to bet that the majority of those are not-above-50%-ideal installs (don’t take that bet, I’m cheating)
Hardly “only special interest groups”
Sorry, you’ve misunderstood, I was talking about direct home power generation being special interest, not residential solar in general. Aussies don’t have a higher rate for direct power generation than anywhere else because grids are, by and large, all suffering from the same fundamental design issues. I’m not at all attempting to argue that solar installs in general are special interest, and especially with the incredibly well thought out incentives the aus gvmt has been offering for both new construction and residential conversion/installation. 100% best handling of it in the world right now.
In no home outside of fringe uses are any lights 12vdc, with the exception of maybe led strip lights for undercabs. They’re all designed for 120vac. That lightbulb in the diagram is an e37/medium base for 120vac.
Couldn’t solar farms just strategically disconnect some of their panels from the grid to avoid that? Solar panels are always collecting energy, but if you disconnect them that energy just goes into making them a bit warmer rather than overloading the grid.
This is some real “basic biology” level thinking here. Even if it were as simple as “Pull the lever Krunk!” then you’ve just turned all that solar infrastructure into junk for the majority of the time that we need power.
People use the vast majority of electricity in a day in the afternoon and at night - times that are noticeably after the peak solar production time. So you have all that energy going into the system with nowhere to go because battery technology and infrastructure isn’t there, and then no energy to fulfill the peak demand. This is an issue nuclear runs into as well because a nuclear plant is either on or off and isn’t capable of scaling its power to the current demand.
There are times where power companies have to pay industrial manufacturing facilities to run their most energy consuming machines just to bleed extra energy out of the grid to keep it from overloading and turning into a multi-million dollar disaster that could take years to get people back on the grid.
The grid is always over energized. That’s not a problem. Large solar and wind farms connect to the grid with great specificity about the maximum amount of energy they will put on the lines. The problem would be not enough energy. Batteries are beginning to solve the dispatch energy issue with renewables. As long as republicans don’t get their way and ruin renewable energy with unfair fossil fuel mandates, the grid will continue to modernize in this way and we’ll be fairly independent of fossil fuels in the future for electricity.
Not an engineer but I sometimes watch them on YouTube.
Could you not just set up a breakout point and have it arc to ground? If the power source is renewable then wasting a little when you have a full grid shouldn’t be a big issue. I’m thinking something along the lines of StyroPyro’s arcing plasma flamethrower should chew up plenty of excess power if you scale it up. As you ramp your total storage up toward 100% capacity I’d start shutting off inputs (disconnecting solars, etc) and then have what’s basically a big old Tesla coil to vent excess power over 95% capacity.
There’s obviously a lot of issues with that idea, but I’d like to throw my wholehearted support behind it anyways, just to see the expressions my FCC/Radio buddies would make when they realize someone’s running a MW-scale tesla coil as some kind of electrical blowoff valve. I can’t easily tell you the exact size of the area you’d utterly obliterate all radio communications in, but it’d be hilariously large.
Faraday cage should cover that no? Styro even mentions in the linked video that he needed to encapsulate his workshop in one in order to not get angry visits from the FCC. I’m sure for something scaled up like this you might want to nest a couple of them together.
Again, not an engineer, I could be (and likely am) wildly off base here. Not sure what makes it such a terrible idea though. I am pretty certain that a MW-scale Tesla coil probably wouldn’t blow out a larger area of communications than, say, nuclear testing would, and we do that all the time in the Midwest.
It’s a very capitalist way of thinking about the problem, but what “negative prices” actually means in this case is that the grid is over-energised. That’s a genuine engineering issue which would take considerable effort to deal with without exploding transformers or setting fire to power stations
Oh, look! A challenge. And a business opportunity! Just get a mortgage, buy some land in the middle of nowhere and make a reverse hydro plant.
Oh, I forgot. Banks don’t loan money for stuff not already existing or net-harmful hyped-up bullshit like AI and crypto.
Home owned windmills, solar panels and battery storage solves that.
Edit: Look at this awesome diagram of how it’s done for a hybrid setup that’s about $400 on Amazon.
PIKASOLA Wind Turbine Generator 12V 400W with a 30A Hybrid Charge Controller. As Solar and Wind Charge Controller which can Add Max 500W Solar Panel for 12V Battery.
Home owned windmills are almost a total waste. Its surprising how little electricity they generate especially given how much the cost to buy and install. Some real numbers. A 400w can cost almost $18k to buy and install. A 410w solar solar panel is about $250 + $3k of supporting electronics and parts. And that same $3k can support 10+ more panels. I looked into it myself really wanted it to be worth it for home, but it just isn’t. Now utility grade wind? Absolutely worth it. You need absolutely giant windmills with massive towers, but once you have those, you can make a LOT of electricity very cost effectively.
Solar panels worth it? Yes. Absolutely.
Batteries, not quite there yet for most folks. Batteries are really expensive, and don’t hold very much electricity $10k-$15k can get you a few hours of light or moderate home use capacity. For folks with really expensive electricity rates or very unreliable power this can be worth it financially, but for most every else. Cheaper chemistry batteries are finally starting to be produced (Sodium Ion), but we’re right at the beginning of these and there not really any consumer products for home made from these yet.
Yeah, right now end of life EV batteries are great for making your own power storage but that’s a level of diy beyond what 95% of people are willing or able to do
What’s infuriating is that we had electric cars before ICE powered cars. 1899. If we would’ve been investing money and effort into research for battery technology since then, we wouldn’t have this problem. Salt batteries, solid state batteries, and other promising tech is in it’s infancy because we just started to take this seriously as a society like 10 years ago.
Better late than never but it grinds my gears that the best argument against solar and wind is power storage requirements due to unpredictable power generation. Like this is an extremely solvable problem.
End of life EV batteries are great for grid-scale operators doing power storage, but I highly recommend against homeowners use them this way. Not just because they are complex DIY projects as you point out, but because the EV batteries that are aging out of car use are NMC chemistry. These are great for high density power storage, which you want in a car, but they are susceptible to thermal runaway if they get too hot. The original Tesla Powerwall and Powerwall 2 also used these same chemistry batteries. I wouldn’t want these in my house. However, in a utility grid scale? Sure, they won’t be anywhere near people so in the unlikely event they do catch fire its a property problem, not a lost human life problem.
I understand your concern, I totally agree that the volatility isn’t ideal, but putting it in a steel box outside your house isn’t that beyond the scope for a diy-er. Envision it the same way a generac sits outside and ties in to your house but with a safe enough enclosure.
As long as you check the cells you use when you deconstruct the car battery it should be fine. All the projects I watch online they don’t even need the liquid cooling system that it utilized when it was in the car because the discharge rate is so far below the C rating the battery that they don’t generate great like when they are in cars
I understand that cell could go bad though at any time, so the box is necessary imo
Oh yeah, super expensive. /s
https://www.amazon.com/dp/B087BY2YV7/?
The first link that came up: https://www.bobvila.com/articles/best-home-wind-turbines/
Ahh I get it now. You have no idea what you’re talking about. You have the smallest understanding of something and assume that is everything. You’re so very far away from understanding the practical applications and limits. You’re also clearly not interested in learning, so I’ll leave you to your impractical delusions.
Oh I’m willing to learn. Explain it to me.
https://youtu.be/oiB1Sm_f48w
Did you not look at the specs on that product? It only produces energy when winds are above 7mph and don’t actually hit the rated output unless the winds are almost 35mph.
Almost none of the country averages an amount of wind power per square meter equivalent to the rating on home turbines at 10 meters above ground level (yellow and red on this map):
Compare to this map of average insolation:
It’s a hybrid solar and wind. Also, that’s why you have batteries for storage.
Why not skip the middleman and go straight solar, then?
For places like Seattle.
Look at Seattle and tell me which parts have enough wind power for your home windmill:
Wait so the same people that can’t drop 500 USD for an emergency are expected to drop 300 USD for a wind turbine and provide the installation of it to boot is that right
“put the excess energy into batteries” is an idea, and is already pretty much what is done, but the large scale implementation still requires a lot of time, effort, and expense.
How, exactly, does that solve anything? It’s not like we can add some kind of magic automatic residential cutoff system (that would just make it worse) and residential distribution is already the problem! Residential solar is awesome (tho home batteries are largely elon propaganda…) but they only contribute to the above issue, not solve it. There are ways of addressing it, but they’re complicated and unglamorous.
Of course we can. They’re called Microgrid Interconnection Devices (MIDs).
Microgrids that can disconnect from the utility at appropriate times may in fact make it better. If homeowners responded to utility alerts of high demand and opted to disconnect from the grid during those times while still having power, that would just make grid operators and home owners happier.
Microgrids are the solution!
While residential BESSs are largely Tesla based, they are absolutely key in the energy transition from fossil- to renewables-based power sources.
How?
Which ways?
I don’t see why home batteries are propaganda. Those prices are plummeting and they have decent payback times in some markets.
The reasons for getting solar is the same reasons for getting batteries.
Because home batteries, while provisionally useful in the same way as a standby generator (though the generator is going to be far more eco friendly than the batteries over their respective lifetimes), is a vastly inferior solution to the implementation of even local grid scale solutions. Also because there is essentially 0 infrastructure designed to handle said batteries, they wear out quite quickly at home scales (unless you’re using uncommon chemistries, but if you’re using iron-nickle batteries you’re not the target audience here) and because Elon popularized them with his “powerwall” bullshit entirely to pump the stock value of Tesla’s battery plant (which is it’s own spectacular saga I encourage you to look up, it’s a real trip).
Batteries in the walls are useful in niches, but the current technology which uses lipo/lion/lifepo4 chemistries is inherently flawed and a route to both dead linemen and massive amounts of E-waste. They could be useful potentially, but as it stands, it’s really bad right now.
How so?
Which ones?
If we’re talking residential scale, people already have the infrastructure: it’s the existing wiring inside their household. If we’re talking Commercial & Industrial (C&I) scale, it’s often the same answer. If we’re talking utility scale, oftentimes battery developers get quoted grid improvement costs from the utility and the developer has to pay those costs in order to connect to the grid. You act like the grid can’t change, and there isn’t any money lying around to make improvements, when in reality there are a lot of investors in BESS because of the high ROI.
This is true at any scale, resi, C&I, or utility, but batteries are modular and you can augment your capacity over time to make up for degradation.
There are more manufacturers than just Tesla in the battery space, many of which who would benefit if the Powerwall failed or lost market share. Even if Tesla popularized them, their decline due to their idiotic, fascist CEO will mean that the existing demand will just look elsewhere for the same product, not exit the market entirely.
In my opinion, every household could benefit from home battery storage just as much as people benefit from gas generators. They have widespread, not niche, appeal. The issue with low penetration in my opinion is lack of knowledge in both policymakers and customers.
While batteries do start to degrade the moment they leave the factory, the fact they have flaws doesn’t mean they aren’t still useful. You’re using the argument that the perfect is the only solution to the imperfect, when that shortsightedness gets in the way of progress.
BESS failures have been falling and bottoming out over the last few years while deployment has skyrocketed. Seems like you’re telling a fiction.
Recycling is projected to increase, especially as more and more battery installations reach End of Life (EOL), where as much as 60-80% of cobalt and lithium could be sourced from urban as opposed to virgin mines in the next 5-15 years. There is a sizable market opportunity for recycling to take off so long as good policy paves the way.
Sure, let’s throw away one of humanity’s better solutions to the climate crisis since it’s bad now. It’s not like it could get better in the future. Again, such a show of shortsightedness.
A generator can provide backup power for unlimited time if fuel is available, but it is highest cost power in the world. Batteries can be charged/discharged every day, displacing dirty energy. A generator is either rarely used or eco destructive.
If you assume what’s being compared is the platonic ideal of both technologies then you’re largely correct, but removing them from the context of the real world (where: high density battery chemistries still wear out quickly, biodiesel is common, the supply chain is a major contributor of greenhouse emissions, the need for power backups is infrequent, and where grid power is still in large part supplied by fossil fuels) isn’t very useful. Local-grid scale battery storage is the best solution we have for direct energy storage, and it’s very much maturing rapidly, but home units are still restricted in the above and countless
(because I am too lazy to count them)additional ways. Ignoring those issues doesn’t work; implementation doesn’t particularly care about theory.LFP batteries are the right home solution (Sodium Ion soon enough). US is tariff/capacity/policy restricted. Utility monopoly restricted if you want to export to grid, or use your EV as V2G. Utilities are also protected from off grid choices, and are changing their pricing with extortive fixed portions of utility bills. Biodiesel is not a sustainable (worse than ethanol if produced intentionally) solution.
You need to look up how much grid storage lithium batteries are being built. It’s exponential growth. Faster than solar.
The reason it’s worthwhile is because solar makes energy with 0 or near 0 price to the owner in certain places, if they store that and use it for later they save money. There are cost calculators out there and for certain markets they make sense.
Of course Tesla pushes it they got a product people want and it makes the consumer and Tesla money. Win win. That’s business, nothing shady about that.
Yes batteries are better on the grid but that’s for exactly the same reasons why solar is better on the grid.
O…kay but that doesn’t address anything I actually said.
That’s just not true.
Same as solar. But you seem to be pro rooftop solar but not home grids and no explanation why.
Makes no sense because the struggles the grid currently has with solar will be offset. Home batteries reduces demand on the grid and internalise production and demand more into the house.
In a cost exercise if the batteries last longer than the payback period they are worth it. Which is the case so that point is meaningless.
I don’t under a CEO pushes a good product that helps the grid and helps consumers make money. Your bias against Elon is just limiting your world view.
Chemistry has nothing to do with electrons on the wires so that doesn’t make sense. Lithium ion batteries are recyclable. Yes batteries are Bette Ron the grid but getting them connected is hard. Same solar, waste on roofs but thats how it goes. The arguments are the same.
They are useful. They aren’t bad.
I’m glad you responded to them point by point. So many myths, fictions, and bigoted beliefs wrapped up as valid opinion.
Solar/wind + storage is the way forward, as the latest IPCC report showed.
Neat, a point by point breakdown. Love those. In no way are they fingernails to the blackboard of internet discussion.
Lets just get this over with:
Okay it’s pretty clear you’re very unfamiliar with this subject.
The entire rest of my comment explains why. That’s what the whole comment is about. “Why” is the entire thesis of the comment. It is the comments entire raison d’être. In summary: the inefficiencies inherent to distributed implementation, the lack of service infrastructure, the short lifespans of the high-density battery chemistries needed in residential installs, etc.
I don’t really care, though. It’s got nothing to do with the points I was making, which is why I didn’t address it. It’s largely irrelevant.
Okay, no. This is not how residential demand or load balancing or power infrastructure works. There’s components you’re assuming exist that would have to run on magic to be safe (some kind of automatic interlock cut-in), and even those would absolutely devastate the grid by constantly adding and removing whole residential loads at random.
Oh buddy… buddy no. Come on.
My gaster is well and truly flabbered. I honestly don’t know what to say in response to this.
Phew, that sure was a lot wasn’t it? Please please please take the time you’d use to write a response to this comment and go watch some electroboom videos instead, he’s very entertaining and a great educator of the concepts at play here.
After installation, a home owner has free electricity? I’m not trying to solve the issues for the power grid people, they have teams of people for that.
Spain and Portugal had almost complete blackouts today. You know who wouldn’t have had blackouts? The people with their own solar panels and windmills.
I acknowledge that there’s no real way to communicate sincerity online, but I’m gonna go ahead and promise I’m not trying to be a dick here when saying this:
I think you’re bonking up on the Dunning Kruger limit here, because that’s absolutely not how it works. Not only are the vast majority of homes not candidates for useful solar installs (you can pay someone to do it, but holy cow nearly every residential solar installer is a scam looking at you, Lumio International (how’s that RICO case going?)), but solar for home-use power generation is very much not the norm for a whole host of reasons (dead linemen one of the biggest ones) and the safety considerations for implementing it generally make it an onerous enough task to manage that it’s appeal is restricted largely to special interest users (homesteaders, preppers, S&R, power system enthusiasts, van life, etc ). There are ways this could be mitigated, but it would require a massive grid overhaul and additional constant upkeep beyond what any current grid already requires.
Here in Australia 37% of households have rooftop solar. Hardly “only special interest groups”.
Australia is an edge case for everything solar and I’ll quite happily admit that! Yay Australia, well done. That said I’d be very willing to bet that the majority of those are not-above-50%-ideal installs (don’t take that bet, I’m cheating)
Sorry, you’ve misunderstood, I was talking about direct home power generation being special interest, not residential solar in general. Aussies don’t have a higher rate for direct power generation than anywhere else because grids are, by and large, all suffering from the same fundamental design issues. I’m not at all attempting to argue that solar installs in general are special interest, and especially with the incredibly well thought out incentives the aus gvmt has been offering for both new construction and residential conversion/installation. 100% best handling of it in the world right now.
In no home outside of fringe uses are any lights 12vdc, with the exception of maybe led strip lights for undercabs. They’re all designed for 120vac. That lightbulb in the diagram is an e37/medium base for 120vac.
Couldn’t solar farms just strategically disconnect some of their panels from the grid to avoid that? Solar panels are always collecting energy, but if you disconnect them that energy just goes into making them a bit warmer rather than overloading the grid.
You can have your own batteries as well. If those then get overloaded, disconnect.
Nothing an open/close gate couldn’t fix. The real problem is how overly complicated we feel we need to make things.
This is some real “basic biology” level thinking here. Even if it were as simple as “Pull the lever Krunk!” then you’ve just turned all that solar infrastructure into junk for the majority of the time that we need power.
People use the vast majority of electricity in a day in the afternoon and at night - times that are noticeably after the peak solar production time. So you have all that energy going into the system with nowhere to go because battery technology and infrastructure isn’t there, and then no energy to fulfill the peak demand. This is an issue nuclear runs into as well because a nuclear plant is either on or off and isn’t capable of scaling its power to the current demand.
There are times where power companies have to pay industrial manufacturing facilities to run their most energy consuming machines just to bleed extra energy out of the grid to keep it from overloading and turning into a multi-million dollar disaster that could take years to get people back on the grid.
Sorry for the naive question, but is it not possible to send the excess electricity to the ground (in the electrical sense)?
It would definitely need to be ground in a literal sense.
And even the earth has its limits. Soil is only so conductive, pump enough energy into it and you’ll turn it to glass (which won’t conduct anymore).
The grid is always over energized. That’s not a problem. Large solar and wind farms connect to the grid with great specificity about the maximum amount of energy they will put on the lines. The problem would be not enough energy. Batteries are beginning to solve the dispatch energy issue with renewables. As long as republicans don’t get their way and ruin renewable energy with unfair fossil fuel mandates, the grid will continue to modernize in this way and we’ll be fairly independent of fossil fuels in the future for electricity.
No it’s not, it’s energized just right. Otherwise you run into either over or under frequencies. Both pretty catastrophic.
Not an engineer but I sometimes watch them on YouTube.
Could you not just set up a breakout point and have it arc to ground? If the power source is renewable then wasting a little when you have a full grid shouldn’t be a big issue. I’m thinking something along the lines of StyroPyro’s arcing plasma flamethrower should chew up plenty of excess power if you scale it up. As you ramp your total storage up toward 100% capacity I’d start shutting off inputs (disconnecting solars, etc) and then have what’s basically a big old Tesla coil to vent excess power over 95% capacity.
There’s obviously a lot of issues with that idea, but I’d like to throw my wholehearted support behind it anyways, just to see the expressions my FCC/Radio buddies would make when they realize someone’s running a MW-scale tesla coil as some kind of electrical blowoff valve. I can’t easily tell you the exact size of the area you’d utterly obliterate all radio communications in, but it’d be hilariously large.
Faraday cage should cover that no? Styro even mentions in the linked video that he needed to encapsulate his workshop in one in order to not get angry visits from the FCC. I’m sure for something scaled up like this you might want to nest a couple of them together.
Again, not an engineer, I could be (and likely am) wildly off base here. Not sure what makes it such a terrible idea though. I am pretty certain that a MW-scale Tesla coil probably wouldn’t blow out a larger area of communications than, say, nuclear testing would, and we do that all the time in the Midwest.
Mmmmm no, a bit of napkin math here but the RF this thing would throw off would just melt any faraday cage smaller than a midsized town.
Also no, there are not nuclear tests all the time in the midwest.