I just had a random thought: a common pattern in Rust is to things such as:
let vec_a: Vec<String> = /* ... */;
let vec_b: Vec<String> = vec_a.into_iter().filter(some_filter).collect();
Usually, we need to be aware of the fact that Iterator::collect()
allocates for the container we are collecting into. But in the snippet above, we’ve consumed a container of the same type. And since Rust has full ownership of the vector, in theory the memory allocated by vec_a
could be reused to store the collected results of vec_b
, meaning everything could be done in-place and no additional allocation is necessary.
It’s a highly specific optimization though, so I wonder if such a thing has been implemented in the Rust compiler. Anybody who has an idea about this?
I mean, the actual operation is just an example, of course. Feel free to make it a
.map()
operation instead. The strings couldn’t be reused then, but the vector’s allocation still could… in theory.map()
can still be used withVec::iter_mut()
,filter_map()
can be replaced withVec::retain_mut()
.Yeah, that’s helpful if I would be currently optimizing a hot loop now. But I was really just using it as an example. Also,
retain_mut()
doesn’t compose as well.I’d much rather write:
Over:
And it would be nice if that would be optimized the same. After all, the point of Rust’s iterators is to provide zero-cost abstractions. In my opinion, functions like
retain_mut()
represent a leakiness to that abstraction, because the alternative turns out to not be zero cost.https://blog.polybdenum.com/2024/01/17/identifying-the-collect-vec-memory-leak-footgun.html might be relevant to your question.
along with the related https://github.com/rust-lang/rust/issues/120091
Thanks! That’s very much what I was looking for!
Is it really fair to say retain doesn’t compose as well just because it requires reference-based update instead of move-based? I also think using move semantics for in-place updates makes it harder to optimise things like a single field being updated on a large struct.
It also seems harsh to say iterators aren’t a zero-cost abstraction if they miss an optimisation that falls outside what the API promises. It’s natural to expect
collect
to allocate, no?But I’m only writing this because I wonder if I haven’t understood your point fully.
(Side note: I think you could implement the API you want on top of
retain_mut
by usingstd::mem::replace
with a default value, but you’d be hoping that the compiler optimises away all thereplace
calls when it inlines and sees the code can’t panic. Idk if that would actually work.)